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Free-surface thin-film flows over topography:
influence of inertia and viscoelasticity
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We consider viscoelastic flows over topography in the presence of inertia. Such flows
are modelled by an integral-boundary-layer approximation of the equations of motion
and wall/free-surface boundary conditions. Steady states for flows over a step-down in
topography are characterized by a capillary ridge immediately before the entrance to
the step. A similar capillary ridge has also been observed for non-inertial Newtonian
flows over topography. The height of the ridge is found to be a monotonically
decreasing function of the Deborah number. Further, we examine the interaction
between capillary ridges and excited non-equilibrium inertia/viscoelasticity-driven
solitary pulses. We demonstrate that ridges have a profound influence on the drainage
dynamics of such pulses: they accelerate the drainage process so that once the pulses
pass the topographical feature they become equilibrium ones and are no longer
excited.

1. Introduction
Free-surface thin-film flows over topography have recently received considerable

attention and have been the focus of several works. We briefly review some of
these studies. Kalliadasis, Bielarz & Homsy (2000) used the long-wave (LWE)
lubrication approximation to perform a systematic parametric investigation of steady-
state solutions for flows over topographical features such as single steps (steps-down
and -up) and finite features (trenches and mounds). Mazouchi & Homsy (2001)
solved for the steady states of the full Stokes equation for flows over topography
and demonstrated that the lubrication theory provides a good approximation of
the flows for sufficiently small values of the capillary number. On the other hand,
Gramlich et al. (2002) examined the possibility of levelling flows over topography by
means of thermocapillary Marangoni stresses produced by localized heaters on the
topographical substrate. The stability of free-surface thin-film flows over topographical
features was addressed by Kalliadasis & Homsy (2001) who examined in detail the
spectrum of the linearized operator of the system that governs the evolution of
infinitesimal disturbances in the transverse direction. They demonstrated that flows
over topographical features are asymptotically stable and they also performed an
energy analysis of the associated eigenvalue problem to reveal the stability mechanism
for such flows. These theoretical predictions were found to be in agreement with fully
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nonlinear time-dependent computations using the two-dimensional LWE (Bielarz &
Kalliadasis 2003). Davis & Troian (2005) undertook a detailed non-modal analysis of
the linear stability problem considered by Kalliadasis & Homsy (2001) to investigate
the possibility of transient amplification associated with the non-normality of the
disturbance operator. A minimal transient amplification of perturbations was found
to occur, thus confirming the predictions of the linear stability analysis.

In this study, we consider viscoelastic free-surface thin-film flows over topography
by using the flow over a step-down as a model system. Viscoelasticity is modelled
with a relatively simple constitutive equation, the convected Maxwell model. There is
particular emphasis on the influence of inertia.

For inertia-driven flows on planar substrates, it is well known that the solitary
wave solution branches of LWE for the speed of the waves as a function of Reynolds
number show branch multiplicity and limit points at O(1) Reynolds numbers above
which solitary waves do not exist (see e.g. Pumir, Manneville & Pomeau 1983).
Time-dependent computations by Pumir et al. (1983) showed that LWE exhibits a
finite-time blow-up behaviour for a sufficiently large set of smooth initial data when
this equation is integrated in regions of the parameter space where solitary waves
do not exist. Obviously this behaviour is unrealistic, and marks the failure of LWE
in the region of moderate Reynolds numbers. The connection between the absence
of solitary wave solutions and finite-time blow up has been scrutinized by Rosenau,
Oron & Hyman (1992) and Oron & Gottlieb (2002) and further investigated by
Scheid et al. (2004).

On the other hand, the so called integral-boundary-layer (IBL) approximation
developed for inertia-driven flows on planar substrates by Shkadov (1967, 1968) has
no turning points and predicts the continuing existence of solitary waves for all
Reynolds numbers. This approximation combines the boundary-layer approximation
of the Navier–Stokes equation, assuming a self-similar parabolic profile beneath
the film and long waves on the interface, with the Kármán–Pohlhausen averaging
method in boundary-layer theory. This procedure results in a two-equation model for
the evolution in time and space of the free surface and local flow rate.

Here we extend Shkadov’s IBL approximation to inertia-driven viscoelastic flows
over topography. The approximation is derived by assuming weak topography and
viscoelasticity. The final model is a system of two nonlinear partial differential
equations for the evolution in time and space of the local thickness relative to the
topography and local flow rate. We examine both steady states and time-dependent
flows. We also investigate the interaction of viscoelastic solitary pulses with the steady
states.

2. Problem definition, scalings and governing equations
We consider free-surface thin-film flows over topography using the flow over a

step-down as a model system. Figure 1 shows the flow situation. A thin viscous
fluid of viscosity µ (to be defined more precisely later), surface tension σ , density
ρ and thickness h0 is flowing over a step of depth D and characteristic scale δ.
The ratio D/δ measures the steepness of the step while for fixed D the steepness
is determined by δ only. The fluid is driven by a flux Uh0 with U and h0 the
characteristic velocity and Nusselt flat-film thickness, respectively, far from the feature.
This flux is due to an external body force such as the Coriolis force (relevant
to centrifugal spin coating) or gravity. To fix ideas we consider here the case of a
gravitationally driven flow with a vertical substrate. U then corresponds to ρgh2

0/µ, the
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Figure 1. Flow over a step-down in topography: a fluid is flowing with a characteristic velocity
U over a surface feature. The relative film thickness is h(x, t) with respect to an orthogonal
coordinate system (x, y) with origin on the step-down. The film thickness far from the feature
is h0. The solid substrate has a shape s(x), a depth D and a characteristic scale δ.

characteristic velocity for viscous gravitational drainage for a film falling down a verti-
cal substrate.

The governing equations are the Navier–Stokes and continuity:

ρ(∂t + v · ∇)v = −∇p − ∇ · τ + ρg, (2.1a)

∇ · v = 0, (2.1b)

where ∇ = (∂x, ∂y), v = (u, v) is the fluid velocity vector, g = (g, 0), p is the fluid
pressure and

τ =

[
τxx τxy

τyx τyy

]

is the deviatoric stress tensor.
These equations are subject to the following boundary conditions. On the wall we

have the usual no-slip boundary condition:

v = 0 on y = s(x). (2.2a)

On the interface y = H (x, t) ≡ s(x)+h(x, t) we have the kinematic boundary condition
along with the normal and tangential stress balances

∂th + u∂xH = v, −p + (τ · n) · n = 2σK(H ), (τ · n) · t = 0, (2.2b)

where, without loss of generality, the pressure of the surrounding gas phase has
been set equal to zero. Also, n and t are unit vectors, normal (outward pointing) and
tangential to the interface, respectively, defined from n = n−1(−∂xH, 1), t = n−1(1, ∂xH )
where n= (1+(∂xH )2)1/2. Finally, K(H ) = −(1/2)∇ · n is the curvature of the interface.

We choose to model the polymeric stresses with an Oldroyd-B constitutive equation
which has been used extensively to model the viscoelastic behaviour of a wide variety
of flows (e.g Bird, Armstrong & Hassager 1987; Spaid & Homsy 1994, 1996):

τ + λ1τ (1) = −µ
(
d(1) + λ2d(2)

)
(2.3a)

where λ1,2 are the relaxation and retardation times, respectively, µ is the zero-shear-
rate viscosity and τ (1) denotes the convected time derivative of the stress tensor
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defined as

τ (1) = (∂t + v · ∇)τ − [(∇v)t · τ + τ · (∇v)]. (2.3b)

d(1,2) denote the first and second rate-of-strain tensors, respectively, defined as

d(1) ≡ d (2.3c)

and

d(2) = (∂t + v · ∇)d(1) −
[
(∇v)t · d(1) + d(1) · (∇v)

]
, (2.3d)

where

d = (∇v) + (∇v)t (2.3e)

is the rate-of-strain tensor.
For simplicity, we shall take λ2 = 0 and λ1 ≡ λ. In this case, (2.3) simplifies to:

τxx + λ (∂t + v · ∇) τxx − 2λ(τxx∂xu + τyx∂yu) = −2µ∂xu, (2.4a)

τyx + λ (∂t + v · ∇) τyx − λ(τxx∂xv + τyy∂yu) = −µ(∂yu + ∂xv), (2.4b)

τyy + λ (∂t + v · ∇) τyy − 2λ(τxy∂xv + τyy∂yv) = −2µ∂yv. (2.4c)

The Oldroyd-B constitutive model then becomes the ‘convected Maxwell model’ which
has been widely used for viscoelastic flow calculations because of its simplicity (Bird
et al. 1987). Setting λ=0 in (2.4) retrieves the Newtonian constitutive equation.

We now introduce the non-dimensionalization

(x, δ) → �(x, δ), (y, h, s) → h0(y, h, s), t → �

U
t, u → Uu, v → Uh0

�
v

p → σh0

�2
p, τxx → µU�

h2
0

τxx, τyx → µU

h0

τyx, τyy → µU

�
τyy,

⎫⎪⎪⎬
⎪⎪⎭

(2.5)

where � is a characteristic lengthscale in the streamwise direction set up by the flow
far from the topographical feature. Time scales with the time in which an interfacial
fluid particle transverses a distance �. The scale for the y-component of the velocity
v is determined by the continuity equation in (2.1b), ∂yv ∼ ∂xu or v ∼ Uh0/�. The
scale for the pressure is obtained by balancing the pressure to the usual interfacial
streamwise curvature gradient due to surface tension in the normal stress balance
(2.2b), p ∼ σ∂x2h or p ∼ σh0/�

2. The choice of the scales for the stresses is discussed
in Appendix A. These scales coincide with those used by Khayat (2000) and Zhang,
Matar & Craster (2002).

In terms of the above non-dimensionalization, the Navier–Stokes and continuity
equations in (2.1) contain three dimensionless parameters: the film parameter
ε = h0/�, the Reynolds number Re =h0Uρ/µ and the capillary number Ca = µU/σ .
Balancing now in the streamwise component of the Navier–Stokes equation the
streamwise pressure gradient with the stress gradients and the body force gives
ε ∼ Ca1/3 or � ∼ h0/Ca1/3. Hence, � is the capillary scale introduced for flows over
topography by Kalliadasis et al. (2000) and is indeed determined by the conditions
far from the feature. In Kalliadasis et al. (2000), the capillary scale was obtained
by simply balancing mean flow to the capillary force term in the LWE equation
for the evolution of the free surface in the absence of inertia and viscoelasticity:
(U/h2

0)∂x(h
3) ∼ (σ/µ)∂x(h

3∂x3H ) which gives h0/� ∼ Ca1/3. The advantage of this scale
is that the LWE equation for the evolution of the free surface in the absence of
inertia and viscoelasticity is free of parameters (see also the discussion in Mazouchi
& Homsy (2001) who solved numerically the full Stokes equations and established
self-similarity of the profiles for small Ca when the variable xCa1/3 was used as an



Thin films over topography 275

horizontal length). Note that an alternative scaling obtained by balancing gravity
directly with the viscous friction in the streamwise momentum equation can also be
used (see e.g. Ruyer-Quil et al. 2005).

The Navier–Stokes and continuity equations in (2.1) then become:

R(∂tu + u∂xu + v∂yu) = −∂xp − ∂xτxx − ∂yτyx + 1, (2.6a)

RCa2/3(∂tv + u∂xv + v∂yv) = −∂yp − Ca2/3(∂xτyx + ∂yτyy), (2.6b)

∂xu + ∂yv = 0, (2.6c)

where R is a modified Reynolds number defined as R = ReCa1/3. These equations are
subject to the wall boundary condition,

u = v = 0 on y = s(x), (2.7a)

and interfacial boundary conditions on y = H (x, t),

∂th + u∂xH = v, (2.7b)

−p + Ca2/3τxx

(∂xH )2

1 + Ca2/3(∂xH )2
− 2Ca2/3τyx

∂xH

1 + Ca2/3(∂xH )2

+ Ca2/3τyy

1

1 + Ca2/3(∂xH )2
=

∂x2H(
1 + Ca2/3(∂xH )2

)3/2
, (2.7c)

−τxx∂xH + τyx

(
1 − Ca2/3(∂xH )2

)
+ Ca2/3τyy∂xH = 0. (2.7d)

Finally, the dimensionless version of the constitutive model becomes

τxx + De(∂tτxx + u∂xτxx + v∂yτxx − 2τxx∂xu − 2τyx∂yu) = −2Ca2/3∂xu, (2.8a)

τyx + De(∂tτyx + u∂xτyx + v∂yτyx − τxx∂xv − τyy∂yu) = −∂yu − Ca2/3∂xv, (2.8b)

τyy + De(∂tτyy + u∂xτyy + v∂yτyy − 2τxy∂xv − 2τyy∂yv) = −2∂yv, (2.8c)

where De = λ/(�/U ) is the Deborah number which expresses the ratio of the time
scale for the viscoelastic effects to the hydrodynamic time scale.

Typical values of the various dimensional parameters in applications with both
Newtonian and viscoelastic fluids are (Stillwagon & Larson 1988, 1990; Fraysse
& Homsy 1994; Spaid & Homsy 1994; Messé & Decré 1997; Fernandez-Parent,
Lammers & Decré 1998; Argyriadi, Vlachogiannis & Bontozoglou 2006): µ =1 −
5000 cp, σ = 20 − 50 dyn cm−1, ρ � 1 g cm−3, h0 = 0.5 µm − 1 mm, D̃ = 1 µm − 1 mm,
δ̃ � 0.01 µm, U = 10−6 − 1 cm s−1 and λ� 1 s – tildes are introduced to distinguish
between dimensional and dimensionless quantities. These give the following wide
ranges of dimensional and dimensionless parameters which cover the widest possible
range of flows: Ca =2 × 10−10 − 2.5, � = 0.5 µm − 170 cm, De = 6 × 10−9 − 3 × 104,
D = 10−3 − 2 × 103, δ =6 × 10−9 − 3 × 10−2 and Re = 10−12 − 10.

3. Long-wave assumption
Since surface tension is, in general, large, waves on the surface are typically long

compared to the film thickness, thus justifying a long-wave assumption corresponding
to a slowly varying interface in time and space. Hence, � is a long length scale in the
streamwise direction so that ε = h0/� ≡ Ca1/3 � 1, representing a typical slope of the
film away from the topographical feature.
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We shall also make the additional assumption of a weak topography. More
specifically,

Ca1/3∂xH � 1 or Ca1/3∂xs � 1,

which allows us to neglect terms of O(Ca2/3(∂xH )2) in our governing equations. The
slope of the topography in the immediate vicinity of the step can be easily estimated
to be:

x = O(δ), ∂xs ∼ D/δ ⇒ Ca1/3∂xs ∼ Ca1/3(�/h0)(D̃/δ̃) = D̃/δ̃.

The condition Ca1/3∂xs � 1 then gives D̃/δ̃ � 1 and D/δ � Ca−1/3 so that D/δ can
be large, but it can only increase at a slower rate to Ca−1/3. However, ∂x̃ s̃ ∼ D̃/δ̃, which
is small. In other words, the topography slope in terms of dimensional variables is
small, even though the steepness D/δ can be large. For fixed D, the condition D/δ � 1
requires δ = δ̃/� � 1 or � � δ̃(� D̃), i.e. the two scales � and δ̃ are well separated,
allowing us to investigate the limit of small δ (for fixed D).

We now turn to the slope of the deviation height in the immediate vicinity of the
step. This slope can be large simply because in this region, x in ∂xh varies within a
distance of O(δ) instead of O(�) far from the feature. As a matter of fact, ∂xh can be
as large as ∂xs ∼ D/δ, as we shall confirm in § 5.1. From the above, ∂x̃h̃ ∼ ∂x̃ s̃ ∼ D̃/δ̃,

and hence the slope of the deviation height in terms of dimensional variables is still
small, as it should be in order to sustain the long-wave assumption. On the other
hand, far from the feature

x � δ, D/δ � 1 ⇒ D̃/h0 � δ̃/� ⇒ D̃/δ̃ � h0/� ⇒ ∂x̃h̃ � ∂x̃ s̃(� 1)

there, so that in terms of dimensional variables, the deviation height slope over the
feature is much larger than the deviation height slope away from the feature.

We note here that the slope ∂xh of the deviation height is everywhere O(1), or
equivalently ∂x̃h̃ =O(ε), the formal order of the slope, except for the immediate
vicinity of the step where it increases to D̃/δ̃. As awkward as it may appear, this
‘inconsistency’ is not specific to the topography problem, and occurs frequently in
thin-film studies, e.g. the problem of a film falling down a planar inclined wall (Chang
1994) where ∂xh can be large at the front of steep solitary waves, thus preventing the
waves from breaking. Similarly in our case, ∂x̃h̃ has its formal order throughout the
domain except in the immediate vicinity of the step where it becomes larger than its
formal order in order to balance the topography contribution ∂x̃ s̃ and hence prevent
our standing wave over the topographical feature from ‘breaking’.

4. IBL approximation
For a film falling down a planar substrate the starting point of the IBL approach is

to assume long-waves in the x-direction. Based then on our discussion in the previous
section, we neglect terms of O(Ca2/3, Ca2/3(D/δ)2) and higher. Hence, to leading order,
the y-component of the equation of motion (2.6b) and normal stress balance (2.7c) are
∂yp = 0 and p = −∂x2H on y = H (x, t). The pressure distribution can then be easily
obtained to be p = −∂x2H which when substituted in the x-momentum equation (2.6a)
yields

R(∂tu + u∂xu + v∂yu) = ∂x3H − ∂xτxx − ∂yτyx + 1. (4.1)

We now turn to the constitutive model in (2.8). A substantial simplification of
this model can be achieved by assuming De � 1. The viscoelastic effects are then
adiabatically slaved to the hydrodynamics. This assumption has been made frequently
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in the study of viscoelastic thin-film flow problems (Spaid & Homsy 1994, 1996; Zhang
et al. 2002) as it allows the ‘inversion’ of the nonlinear constitutive viscoleastic model
to obtain explicit expressions for the stresses. At first-order in De, we obtain from
(2.8) the following approximation for the stresses:

τxx = −2De(∂yu)2, (4.2a)

τyx = −∂yu + De[∂t∂yu + u∂x∂yu + v∂yyu − 2(∂yu)(∂yv)], (4.2b)

τyy = −2∂yv + O(De), (4.2c)

where for τyy only the O(1) term is required for the analysis to follow. Hence, the
memory effects associated with viscoelasticity are postponed to O(De). Note that
since we neglect terms of O(Ca2/3, Ca2/3(D/δ)2) but we keep terms of O(De), we must
have Ca2/3, Ca2/3(D/δ)2 � De. This is sufficient to determine the level of truncation
of both De- and Ca-expansions and a precise relative order between De and Ca is
not required. However, the relative order between De and R = ReCa1/3 determines the
relative importance between viscoelasticity and inertia. For example, if De � Ca1/3

then for O(1), or even moderate values of Re, De is large compared to R and
viscoelasticity dominates over inertia.

An ad hoc and convenient simplification of our system can be made by assuming
that the velocity profile has the self-similar form

u =
3q

h

(
η − 1

2
η2

)
(4.3a)

where

η =
y − s(x)

h(x, t)
, q =

∫ H

s

u dy, (4.3b)

with η a natural similarity variable to use – as the boundary conditions in terms of η

are applied at η =0 and η = 1 – and with q the flow rate in the streamwise direction.
The continuity equation then in (2.6c) along with the no-slip condition in (2.7a) can
be used to obtain v, v = −

∫ y

s
∂xu dy ′. For s = 0, (4.3) is the velocity profile introduced

by Shkadov (1967, 1968) for Newtonian films falling down planar substrates.
The parabolic velocity distribution for u in (4.3a) is the simplest possible test

function which satisfies all boundary conditions. Indeed, it satisfies the no-slip
condition (2.7a) and also gives ∂yu|y=H = 0. Hence from (4.2a), τxx |y=H = 0 and from
(4.2b), τyx |y=H = [(∂t +u∂x +v∂y)∂yu]y=H . This last quantity vanishes since ∂yu is always
equal to zero at any point on the interface so that its time derivative following any
material point on the interface (which is merely the ‘material derivative’) is obviously
equal to zero. As a consequence both the x-directed normal stress and shear stress
on the interface vanish and hence the tangential stress balance in (2.7d) is trivially
satisfied. In addition, the integral of the u-profile in (4.3a) with respect to y (or the
similarity variable η) gives the flow rate q , as it should.

The introduction of the test function (4.3a) yields the following residual for the
momentum equation (4.1):

R = R(∂tu + u∂xu + v∂yu) − ∂x3H + ∂xτxx + ∂yτyx − 1. (4.4)

Following the studies by Ruyer-Quil & Manneville (2000, 2002) for Newtonian films
falling down planar substrates, the momentum residual can be minimized via a
weighted residual approach that would yield a constraint on q and hence a closure
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for the system,

〈w, R〉 = 0 (4.5)

where w is the weight function and the inner product is defined as 〈f, g〉 =
∫ 1

0
fg dη

for any two functions f and g with appropriate boundary conditions.
Specifying the weight function fixes the particular weighted-residual method being

used. For Newtonian films falling down planar substrates, Ruyer-Quil & Manneville
(2000, 2002) showed that the Kármán–Pohlhausen averaging method employed by
Shkadov (1967, 1968) can be viewed as a special weighted-residual method with
w ≡ 1. This is the weight function we adopt here. The same weight function was
also adopted by Kalliadasis et al. (2003a, b) for Newtonian films falling down
heated planar substrates, whereas for the same problem, high-order weighted-residuals
approximations have been developed by Ruyer-Quil et al. (2005) and Scheid et al.
(2005).

Substituting then the test function (4.3a) into (4.5), performing integrations by
parts and using the no-slip condition (2.7a), continuity equation (2.6c) and kinematic
condition (2.7b) yields the averaged momentum equation

R

[
∂tq +

6

5
∂x

(
q2

h

)]
= h∂x3 (h + s) + h − 3q

h2
+ A + B + C, (4.6)

an evolution equation for q where

A = −∂x

∫ s+h

s

τxx dy, B = −(∂xs)τxx

∣∣
y=s

, C − 3q

h2
= τyx

∣∣
y=s

.

Details of the derivation procedure are given in Appendix B. A represents the
contribution of the x-directed normal stress average across the film, B is an x-
directed normal stress response on the wall induced by the topography and C−3q/h2

is the wall shear stress. Using the expressions for the stresses in (4.2) gives

A = 6De∂x

(
q2

h3

)
, B = 18De

q2

h4
∂xs, C = De(C1 + C2),

where

C1 = 3∂t

(
q

h2

)
, C2 = −18

q2

h4
∂xs.

All these terms are due to the viscoelasticity. C2 arises because of the topography
and is the contribution of the y-directed normal stress to the wall shear stress. Notice
that DeC2 exactly cancels B. As a consequence, the averaged momentum equation in
(4.6) has a single non-homogeneous term, −∂x3s, representing the additional capillary
pressure induced by the topography and two viscoelastic forcing terms, A and C1. In
the vicinity of the step, the capillary pressure gradient induced by the topography is
O(D/δ3) and is balanced by the pressure gradient due to the flow (see our discussion
in § 3).

Substituting now all the above terms into (4.6) yields

R

[
∂tq +

6

5
∂x

(
q2

h

)]
= h∂x3 (h + s) + h − 3q

h2
+ 3De

[
2∂x

(
q2

h3

)
+ ∂t

(
q

h2

)]
. (4.7a)

Equation (4.7a) is complemented by the kinematic condition on the interface (2.7b)
which, by integrating the continuity equation (2.6c) across the film, can be replaced
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with

∂th + ∂xq = 0. (4.7b)

Equations (4.7a) and (4.7b) are our final IBL system. Following Kalliadasis et al.
(2000) we take the topography shape to be

s(x) = D

[
1

2
− 1

π
tan−1

(
x

δ

)]
. (4.8)

For De =0 and s = 0, (4.7) reduces to Shkadov’s IBL approximation for a Newtonian
film falling down a planar substrate (Shkadov 1967, 1968). The derivation of LWE
from (4.7) is given in Appendix C.

4.1. Linear stability of the Nusselt flat-film solution

It is useful to examine the linear stability of the Nusselt flat-film solution far from
the topographical feature. Consider infinitesimal perturbations in the form of normal
modes

h = 1 + h′ exp(λt + ikx), q = 1
3

+ exp(λt + ikx)

representing travelling waves in the streamwise direction with wavenumber k. The
complex frequency iλ= iλR −λI contains the growth rate λR, and the complex velocity
c = iλ/k with cR = − λI /k the phase velocity. Substituting these modes into (4.7) with
∂xs =0 and linearizing for h′, q ′ � 1 yields a linear algebraic system with constant
coefficients of the form A[h′q ′]t = 0 with A a 2 × 2 matrix. For the system to have
non-trivial solutions, it is necessary and sufficient that its principal determinant be
equal to zero. This yields an algebraic eigenvalue problem of the form |A| =0 which is
the dispersion relation for λ as a function of k. For R = O(1), the dispersion relation
has two roots, which for k � 1 can be expanded as (it turns out that even terms of
this expansion are real, and odd purely imaginary),

λ1 ∼ −ik + 1
3

(
1
3
R + De

)
k2

and

λ2 ∼ − 3

R
− 9

R2
De +

(
1

5
+

18

5

De

R

)
ik − 1

3

(
1

3
R + De

)
k2,

where the second root has been further expanded for De � 1.
The first root is an unstable mode corresponding to a surface wave propagating

downstream with phase velocity c1
R ∼ 1 + O(k2) and growth rate λ1

R = (1/3)((1/3)R +
De)k2 + O(k4). The growth rate curve saturates when we include terms of O(k4) and
is characterized by an unstable band 0 � k � kc containing the maximum growing
wavenumber kmax and the cutoff wavenumber kc. For example, with R =1 and
De = 0.1, λ1

R ∼ 0.144k2 − 0.361k4 with kmax � 0.44 and kc � 0.64. The second root is
damped and corresponds to a surface wave propagating upstream with phase velocity
c2
R ∼ − (1/5) − (18/5)(De/R) + O(k2, De2). For R, De � 1, the real part of the second

root tends to −∞, while the first root gives

λ1 ∼ −ik − 1
3
k4 + 1

3

(
1
3
R + De

)
k2.

For De = R = 0, this mode becomes λ1 = −ik − (1/3)k4. In this case, normal modes
on the flat-film regions represent monochromatic waves that travel steadily with the
kinematic wave velocity 1 and at the same time decay at the rate −(1/3)k4.

Hence, viscoelasticity has a destabilizing influence on the Nusselt flat-film solution.
We shall return to this point in § 5 when we examine the time-dependent evolution of
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the free surface. Note that for De= 0, we recover the classical Kapitza hydrodynamic
mode of instability due to inertia for a film of a Newtonian liquid falling down a
planar substrate (Kapitza 1948).

4.2. Steady-state flows

For steady-state flows, ∂t = 0 and h(x → ± ∞) = 1, that is, perturbations of the
free surface decay to the flat-film solution far upstream and downstream of the
topographical feature. The steady version of (4.7b) then yields q = const for all x,
while the steady version of (4.7a) yields q = 1/3 as x → ± ∞ so that q = 1/3 for all x.
The steady version of (4.7a) then becomes

∂x3h = −∂x3s +
1 − h3

h3
+

2

15h5
(−Rh2 + 15De)∂xh (4.9a)

subject to the boundary conditions

h(x → ± ∞) = 1. (4.9b)

The topography shape is given by (4.8). Notice that viscoelasticity affects the steady
states through the single term 2De∂xh/h5 originating from A (which in turn originates
from the average of the x-directed normal stress across the film). Finally, for
De= R = 0, equation (4.9) reduces to that obtained by Kalliadasis et al. (2000) for
non-inertial flows of Newtonian liquids over topography.

5. Results
The nonlinear ordinary differential equation, (4.9a), defining the steady states is

solved numerically as a two-point boundary-value problem using the NAG solver
D02GAF based on a finite-difference scheme with a deferred correction allied with
a Newton iteration to solve the finite-difference equations. The accuracy of the
numerical scheme is tested by varying the domain size and the initial mesh (the
algorithm constructs the solution on a mesh defined by adding points to the initial
uniform mesh with 104 points). Further, for Newtonian liquids in the absence of
inertia (R = De= 0), we confirm the results obtained by Kalliadasis et al. (2000).

In all cases, the topographical shape is a step-down with D =1. Figure 2(a) shows
typical shapes for the profile H (x) = h(x) + s(x) for fixed δ and R but different De.
A domain [−10, 10] with 104 points was found to be sufficient for the numerical
solution to converge. Note that as we pointed out in § 3, the long-wave assumption
is satisfied for Ca1/3∂xs � 1. For the values δ = 0.01 and D = 1 in the figure, the
quantity Ca1/3∂xs ∼ Ca1/3/δ takes the value ∼ 0.1 for Ca ∼ 10−9, i.e. close to the lower
end of the range of capillary numbers given in § 2. Hence, for the small value δ = 0.01
the long-wave assumption is satisfied for very slow flows.

The figure indicates that viscoelastic flows over topography in the presence of
inertia are also characterized by an asymmetric capillary ridge forming immediately
before the step much like non-inertial flows of Newtonian liquids (Kalliadasis et al.
2000). Further, as figure 2(b) shows, there is a point immediately to the left of the
step, where the deviation height h reaches a minimum, again much like non-inertial
flows of Newtonian liquids (Kalliadasis et al. 2000). We shall be referring to this
minimum as the depression. Note that, as was pointed out by Mazouchi & Homsy
(2001), the ridge provides a capillary pressure gradient that is the only driving force
for the flow once the ridge enters the step: indeed, in this region, the free surface is
nearly perpendicular to the body force.
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Figure 2. (a) Free-surface profiles H (x) = h(x) + s(x) for a step-down in topography with
D = 1, δ = 0.01 and R = 5. (b) Deviation heights for the profiles in (a). —, De= 0; - - -, 0.4;
· · ·, 1.0.

5.1. On the steepness of the topography

Figure 2(b) reveals that in the immediate vicinity of a sharp step, ∂xh is also large.
Our computations indicate that ∂xh ∼ ∂xs ∼ D/δ, as first mentioned in § 3, so that for
fixed D, the deviation height slope around the step is defined by δ, and ∂xh becomes
large there because of the topography. In fact for a sharp step, ∂xs approaches −	(x)
with 	(x) a Dirac function at x = 0, and ∂xh approaches 	(x) such that ∂xh → −∂xs.
This observation was made first by Kalliadasis et al. (2000) in their study of flows
over topography, but in the absence of inertia and viscoelasticity (see figure 8 in
their paper). This limiting behaviour implies that the pressure gradient due to the
flow cancels out the topography discontinuity: the only way to do that is with a
discontinuity of the same form as that for the topography, but with opposite sign –
the overall free-surface height cannot be discontinuous. The result is a smooth surface,
as shown in figure 2(a).
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Recall now from our discussion in § 3 that even though the topography can be
steep in the rescaled variables, in terms of the original dimensional variables, the
topography depth is shallow compared to the topography scale. This was expressed
by the condition D̃ � δ̃. The natural question then is why are we interested in the
limit δ � 1?

Mazouchi & Homsy (2001) solved the full Stokes equations for a Newtonian fluid
over a step function (δ = 0). This is the exact solution to the topography problem and
hence correctly describes the flow regardless of the size of D. In fact, a comparison
of the exact solution to that obtained with the LWE model developed by Kalliadasis
et al. (2000) showed that for small Ca (roughly smaller than 10−2) the LWE model is
a valid approximation despite the substrate not being a small sloped topography. We
expect the same to be true in our case, at least for weak inertia and viscoelasticity.

Hence, the simplified solution presented here based on the long-wave approximation
should match, for small Ca and small δ, the solution of the full system without any
approximations. This is because the simplified solution turns an originally smooth
function into a sharp step function as δ → 0: both full solution and simplified solution
solve for flow over a step in terms of dimensionless variables. It is then not surprising
that the simplified solution should match the full one: although it converts a smooth
function to a sharp step, the long-wave assumption is still obeyed as we emphasized
in § 3, and hence the model obtained based on the long-wave assumption should be
accurate.

In other words, the full solution solves for flow over a sharp step both in terms
of dimensional and dimensionless variables, and in terms of dimensionless variables
the solution agrees with that obtained from the simplified model, provided that all
conditions for the simplified model are met, i.e. D̃ � δ̃ � � and h0 � �(D̃/δ̃) (see
§ 3). In terms of dimensional variables, the condition D̃ � δ̃ � � implies that the
topography is shallow with a characteristic scale small compared to the capillary
scale, and the condition h0 � �(D̃/δ̃) implies both ∂x̃h̃ � ∂x̃ s̃, i.e. the slope of the film
far from the topography is small compared to the topography slope, and 1 � D/δ for
small δ. Also, h0 � �(D̃/δ̃) ensures h0 � � for a shallow topography, or equivalently,
the capillary number must be small. For the step function, the conditions are simply
D̃ � � and h0 � �, or with D̃ ∼ h0 used in the computations by Mazouchi & Homsy
(2001), the capillary number must be small.

It is precisely for this reason that the steady states of the full Stokes equations for
flow over a step function approach for small Ca those obtained from the LWE theory
for small δ. Physically, for small Ca, the capillary length � is so long compared to
both D̃ and δ̃ that the flow cannot tell the difference between a sharp step with depth
D̃ and a mild topography with depth D̃ and width δ̃: from the point of view of a
coordinate system where the streamwise variation is measured in units of �, the mild
topography appears ‘steep’.

Another way to put it is that the flow over a sharp step in terms of dimensional
variables can be approximated with the flow over a much simpler smooth function
when all conditions required for the simplified model are satisfied. (The precise
functional form of the smooth function is immaterial as long as it leads to
∂xs ∼ D/δ � 1). One can then solve for the flow using the simplified model, instead
of the full model, thus greatly reducing the computational requirements.

5.2. Influence of inertia and viscoelasticity

Let us now discuss the influence of viscoelasticity. For a given R, increasing De and
thus making the fluid increasingly non-Newtonian leads to a decrease of Hmax as
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Figure 3. Free-surface profiles for —, R = 0; - - -, 15; · · ·, 25 with De= 0.2, D = 1 and
δ = 0.01.

shown in figure 2(a). In fact, our results suggest that with increasing De, the quantity
Hmax − 1 tends monotonically to zero, corresponding to a solution in which the free
surface conforms closely to the topography. Of course, values as large as De= 1 and
larger are beyond the region of validity of our perturbation expansion. Nevertheless,
the question of an asymptotic behaviour of the free surface for large De is still a
relevant one within the context of our model in (4.9) (and, in fact, on many occasions
perturbation theories can provide a good approximation beyond the region of their
validity).

Hence, viscoelastic fluids have smaller ridges compared to Newtonian ones. In
that respect, the situation here is then similar to that of another thin-film problem
that exhibits ridges: that of viscoelastic contact lines driven by body forces (Spaid &
Homsy 1994, 1996) where the viscoelastic effects tend to reduce the height of the ridge
(for sufficiently small values of the precursor film thickness). However, the mechanism
for the reduction of the ridge in our case is different to that for viscoelastic contact
lines (see Spaid & Homsy (1994) for a detailed analysis of the mechanism in the
contact-line problem): it is because the maximum velocity gradients and hence shear
in our system occur in the vicinity of the depression (where the deviation height is a
minimum). The polymeric molecules then experience maximum stretching around the
depression, resulting in maximum contraction of the molecules there, which then gives
rise to increasing x-directed normal stresses (the contraction pulls against the shear
stress that stretches the molecules) which in turn lead to expansion/thickening of the
fluid in the vicinity of the step and hence to reduction of the depression (recall also
from § 4.2 that viscoelasticity affects the steady states through the x-directed normal
stresses only). A diminished depression corresponds to a smaller ridge owing to
conservation of mass in the system expressed by the invariance

∫ +∞
−∞ (1 − h3)/h3dx =0

which is guaranteed from (4.9a) using (4.9b) (this property implies that if h > 1 in
a certain domain, we must have h < 1 in another domain so that (1 − h3)/h3 can
change sign from < 0 to > 0 and the integral vanishes).

Figure 3 shows the influence of inertia on flows over a step-down. A domain
[−20, 10] with 8 × 104 (starting from 104) points was found to be sufficient for the
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Figure 4. Hmax as a function of De and R for D = 1 and δ = 0.2.

numerical solution to converge. The bigger domain in figure 3 compared to that in
figure 2 is due to the presence of the long oscillations at the back of the capillary
ridge. Increasing R leads to an amplification of the capillary ridge. The capillary
oscillations to the back of the ridge are also enhanced – a signature of finite inertia
in the system (and hence energy dissipation on short wavelengths). Hence, unlike De
whose influence is local and limited around the capillary ridge, R influences a much
larger region of the flow. Figure 4 is a two-dimensional plot of Hmax as a function of
both De and R. Evidently, the higher capillary ridges appear for small De and large
R.

Finally, the maximum height of the capillary ridge Hmax for De= 0 in figure 2(a)
is ∼ 2.25 larger than both the LWE result with R = De =0, Hmax ∼ 2.18, and the
Stokes flow result with R = De = 0 by Mazouchi & Homsy (2001), Hmax ∼ 2.16 at
Ca =0.025. This increase is purely an inertial effect. On the other hand, the maximum
height of the capillary ridge for R = 0 in figure 3(a) is ∼ 2.14 smaller than both the
LWE result with R = De = 0, Hmax ∼ 2.18, and the Stokes flow result with R = De = 0
by Mazouchi & Homsy (2001), Hmax ∼ 2.16 at Ca = 0.025. This decrease is purely a
viscoelastic effect.

5.3. Time-dependent evolution: interaction of a solitary pulse with the capillary ridge

Figure 5 depicts the time evolution obtained from (4.7) for R = 3, De= 0.1, D = 1 and
δ =0.1. Our numerical scheme is fully implicit in time with projections of h and q onto
cubic and linear splines, respectively (owing to the order of the highest derivatives
for these two functions being 3 and 1, respectively) and the time derivatives of h and
q approximated by forward finite differences. At every time step, we obtain a set of
nonlinear algebraic equations that we solve using Newton’s method. We dynamically
choose the time step to avoid using unnecessarily small time steps. The accuracy of
the numerical scheme is determined by variation of domain size and number of points
in the domain.

The boundary conditions are inlet conditions at the left-hand end of the domain
with h = 1, q = 1/3 and h =1, ∂xh = 0 at the exit. Clearly, the last boundary condition
is not appropriate when interfacial disturbances approach the exit and in this case
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Figure 5. Time evolution for the free surface in an extended domain obtained from (4.7) for
R = 3, De = 0.1, D = 1 and δ = 0.1. The vertical axis marks the height of the total free-surface
height H for the bottom curve. Successive curves are separated by space intervals 	H = 4 in
the vertical direction and time intervals 	t = 10 with t ∈ [0, 50]. At t = 50, a second soliton
is already visible behind the original one.

it must be replaced with a ‘soft boundary condition’ that would minimize upstream
feedback. However, here we are primarily interested in the evolution of the interface
around the capillary ridge (which for sufficiently long domains is not influenced by
the actual condition at the exit). The initial condition is taken to be hs + ĥs − 1
where hs denotes the steady state for flow over topography and ĥs a solitary wave
on a substrate of thickness 1. This solitary wave is obtained from a time-dependent
computation using the same boundary conditions as those in figure 5. The initial
condition is a Gaussian distribution.

The shape of the solitary pulse on the surface of a film falling down a planar
substrate and in the presence of inertia and viscoelasticity is qualitatively similar
to that of solitary pulses for Newtonian films falling down a planar substrate (e.g.
Chang & Demekhin 2002; Ruyer-Quil & Manneville 2002). This ‘generic’ solitary
wave shape consists of a big hump with a gently sloping back edge and a steep front
edge preceded by a series of small decaying bow waves. However, the amplitude of
the viscoelastic solitary wave relative to its substrate for the conditions in figure 5
is � 2.35, � 10% larger than the value � 2.05 of the corresponding Newtonian
solitary wave. This is consistent with our linear stability analysis in § 4.1 which
showed that viscoelasticity has a destabilizing influence on films falling down planar
substrates (recall from this section that normal modes on the flat-film regions represent
infinitesimal monochromatic waves travelling downstream with the kinematic wave
velocity c1

R ∼ 1 and growth rate λ1
R ∼ (1/3)((1/3)Re + De)k2). The basic instability

mechanism for a film on a flat substrate is the same as that causing the reduction
of the depression discussed earlier: the normal stresses induced by stretching the
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polymeric molecules with the shear flow cause an expansion of the fluid. Note also
that for the value of R in figure 5, the LWE model obtained in Appendix C blows
up in finite time (see also our discussion in § 1).

The solitary pulse at t = 0 in figure 5 is slightly ‘excited’, i.e. it has a larger amplitude
than that corresponding to the parameter values of the figure. This is because the
non-stationary computation was deliberately not performed for very large times;
had we done this, our pulse would have approached a stationary equilibrium pulse
asymptotically in time. Hence, we have a quasi-equilibrium pulse that carries an
additional amount of mass compared to the equilibrium one. The velocity of the
pulse is � 2.5, i.e. � 2.5 times that of the kinematic wave velocity. As the pulse
travels, the excess mass drains to the back of the pulse causing its decay. This
draining mass grows exponentially behind the pulse forming a tail in this region. The
drainage process has a slow dynamics and hence the exponential growth of the tail
to the back is small. As a consequence, the tail is not really visible in the snapshots
of figure 5 for t = 0, 10, 20. Hence, the situation here is similar to that of solitary
pulses on Newtonian falling films. In this case, Chang, Demekhin & Kalaidin (1998)
and Chang & Demekhin (2002) have demonstrated that the tail region is driven by a
‘resonance pole’ mode. A similar mode was uncovered by Kalliadasis et al. (2003a) in
the problem of a falling film heated from below by a local heat source. Such modes
are not true eigenmodes of the linearized eigenvalue problem that governs the stability
of the solitary pulses since they exhibit unbounded behaviour as x → −∞. However,
they can be regarded as true eigenvalues of an appropriate weighted space (see also
Chang, Demekhin & Saprykin 2002; Kalliadasis et al. 2003a). It is likely that in our
case such resonance poles are responsible for determining the decay rate and drainage
dynamics of excited viscoelastic solitary pulses; however, a detailed analysis of these
modes would require investigation of the linearized eigenvalue problem governing the
stability of the pulses, which is beyond the scope of the present study.

The draining excited pulse will eventually meet the capillary ridge. At t = 30, the
pulse is right on top of the ridge. Note that relative to the pulses for t = 0, 10, 20, the
width of the pulse for t = 30 is smaller and its amplitude relative to the surrounding
free surface larger. The mechanism for the formation of this narrow pulse is not
related to viscoelasticity. In fact, it is exactly the same to that for the formation of the
ridge, as discussed earlier: the fluid bunches up before the entry to the step so that it
can enter the step. The step then influences the solitary pulse in exactly the same way
as the fluid in the capillary ridge. We then have a pulse which is more excited and
further disturbed from its equilibrium and, as a consequence, the drainage process is
now faster. The solitary wave then sheds the excess mass prior to entering the step.
(Note that the excess mass that drains behind the pulse immediately before the pulse
enters the step is due to the further excitation of the pulse by the same mechanism
responsible for ridge formation and should not be confused with the mass that drains
slowly to the back of the slightly excited pulse before it meets the ridge. This mass
continues to be present on the flat film behind the ridge for t = 30, 40, 50 and moves
slowly from left to right.) This mass is already visible immediately behind the solitary
wave for t =30. It also travels from left to right following the primary soliton, but at
a lower speed and so it lags behind. It is visible in the snapshot for t = 40 right at the
front of the capillary ridge (but some of it still remains on the ridge which for t = 40
has a slightly larger amplitude than the steady-state value). This mass forms a small
soliton at t = 50 by sucking liquid from the front substrate and the small amount
of mass around the ridge at t = 40 that eventually drains out of it. This soliton will
eventually grow to a stationary equilibrium pulse (by continuously sucking liquid
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Figure 6. Time evolution for the free surface in an extended domain obtained from (4.7) for
R = 1, De = 0.3, D = 1 and δ = 0.1. The vertical axis marks the height of the total free-surface
height H for the bottom curve. Successive curves are separated by space intervals 	H = 2
in the vertical direction and time intervals 	t = 10 with t ∈ [0, 70]. The inset shows a wave
packet at t = 70 with amplitude � 0.1 representing the first stages of the development of a
second soliton behind the original one.

from the front substrate) of the same amplitude and speed as the original pulse which
has now travelled near the end of the domain for t =50 (there is no more drainage
from this pulse).

Hence, the presence of the capillary ridge accelerates the drainage process of an
excited solitary pulse and breaks the resonance poles – drainage law for solitary
pulses on planar substrates. For the parameter values in figure 5, the drainage process
is controlled by inertia while the role of viscoelasticity is restricted to increasing the
height of the solitary pulse and reducing the height of the ridge.

The capillary ridge eventually recovers its steady-state configuration as soon as
the excess mass is convected away from the step-down. This then indicates that
viscoelastic capillary ridges are strongly stable, much like ridges in non-inertial flows
of Newtonian liquids over topography (Kalliadasis & Homsy 2001; Davis & Troian
2005). The mechanism for this strong stability must be the same as Newtonian ridges,
i.e. the capillary pressure induced by the topography acts as a strong restoring force
that brings the ridge back to its original shape (Kalliadasis & Homsy 2001).

Figure 6 shows the time-evolution obtained from (4.7) for R = 1, De= 0.3 and
with the remaining parameters the same with those in figure 5. Both inertia and
viscoelasticity now contribute to the evolution and the drainage process. The soliton
travels with a velocity � 2.5, close to that for the soliton in figure 5. The drainage
process is similar to that occurring in figure 5, but the growth of the second soliton
behind the original one is slower to that in figure 5. Indeed, for the parameter values
of figure 5, the maximum growth rate is λmax � 0.06 whereas for the parameter values
of figure 6, λmax � 0.032. On the other hand, for figure 5, kmax � 0.65, and for figure 6,
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Figure 7. Time evolution for the free surface in an extended domain obtained from (4.7) for
R = 10−4, De = 0.3, D = 1 and δ = 0.1. The vertical axis marks the height of the total
free-surface height H for the bottom curve. Successive curves are separated by space intervals
	H = 0.5 in the vertical direction and time intervals 	t = 10 with t ∈ [0, 110]. The inset
shows a wave packet at t = 110 with amplitude � 0.025 representing the onset of the creation
of a second soliton behind the original one.

kmax � 0.56, so that the maximum growing wavenumber does not change significantly.
The excess mass that the original soliton sheds prior to entering the step travels to
the front of the step and eventually starts to grow into a wave packet, shown for
t = 70 in the inset of the figure. The second soliton is created within this wave packet.

Solitary waves on the surface of a viscoelastic film falling down a planar substrate
can exist even in the absence of inertia. These waves resemble the inertia-driven
solitary waves on Newtonian liquids. Figure 7 depicts the time evolution obtained
from (4.7) for R = 10−4, De = 0.3 and with the remaining parameters the same as
those in figure 5. The evolution is now driven primarily by viscoelasticity. The soliton
travels with a velocity � 1.5 and is slower than both solitons in figures 5 and 6. Its
amplitude is also smaller than that in figures 5 and 6. The drainage events resulting
from the interaction of an excited solitary pulse with the capillary ridge are similar
to those observed in figure 5. The growth of the second soliton behind the original
one is slower than that in figure 6 as now λmax � 0.0076; however, kmax � 0.4, and it
has not changed significantly from both figures 5 and 6. The second soliton is born
out of the wave packet shown in the inset of the figure for t = 110.

6. Summary
We have examined the influence of inertia and viscoelasticity on free-surface thin-

film flows over topography by using the flow over a step-down as a prototype.
The viscoelastic behaviour was modelled with the convected Maxwell constitutive
equation. Our analysis was based on the integral-boundary-layer approximation of
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the Navier–Stokes equation and wall/free-surface boundary conditions whereas the
influence of the viscoelastic effects was examined via a perturbation theory for small
Deborah numbers. The final model consists of two nonlinear partial differential
equations for the evolution in time and space of the local deviation height and local
flow rate.

We considered both steady states and time-dependent flows. We showed that steady
states are characterized by an asymmetric capillary ridge before the entrance to the
step-down and a depression immediately before the step-down much like Newtonian
flows over topography. The maximum height of the ridge decreases monotonically
as the Deborah number increases. This is because the normal stresses are more
pronounced for large Deborah numbers, leading to a reduction of the depression
and hence reduction of the ridge. These normal stresses are a direct consequence of
the stretching that the polymeric molecules experience owing to the shear flow which
has maximum velocity gradients in the vicinity of the step. Thus, the depression
reduction/ridge reduction is effectively a shear-stress relief mechanism. On the other
hand, increasing the modified Reynolds number leads to a monotonic amplification
of the ridge and enhances the capillary oscillations to the back of the ridge.

Further, we investigated the interaction of inertia/viscoelasticity-driven quasi-
stationary solitons with capillary ridges and we demonstrated that ridges have a
dramatic influence on the drainage dynamics of excited pulses. This interaction is
non-trivial. When an excited solitary pulse coalesces with the capillary ridge it becomes
much more excited owing to exactly the same mechanism that is responsible for the
formation of the capillary ridge. This then induces a fast drainage process by which
the pulse sheds its excess mass prior to passing over the step-down. Once the pulse has
travelled over the topographical feature, it becomes an equilibrium stationary solitary
wave no longer excited. The ridge is disturbed during the coalescence event with the
soliton, but once the soliton passes over the feature, it recovers its original shape. This
demonstrates that viscoelastic capillary ridges are stable, much like their Newtonian
counterparts. The solitary pulse also retains its stability and is not destroyed by the
capillary ridge unlike e.g. radiation wave packets in Newtonian flows that can even
destabilize a linearly stable pulse (Chang et al. 1998) (unless the pulse outruns the
expanding growing wave packet).
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We acknowledge financial support from Dow Benelux BV, an Overseas Research
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Appendix A. Scales for the stresses
Here we discuss the scales for the stresses. Consider the non-dimensionalization:

τxx → aτxx, τyx → bτyx, τyy → cτyy.

By using the non-dimensionalization in (2.5) with � =h0/Ca1/3 the capillary scale
discussed in § 2, the constitutive model in (2.4) becomes:

τxx + De

(
∂tτxx + u∂xτxx + v∂yτxx − 2τxx∂xu − 2Ca−1/3 b

a
τyx∂yu

)
= −2

µU

a�
∂xu, (A 1a)
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τyx + De

(
∂tτyx + u∂xτyx + v∂yτyx − Ca1/3 a

b
τxx∂xv − Ca−1/3 c

b
τyy∂yu

)

= −µU

bh0

(
∂yu + Ca2/3∂xv

)
, (A 1b)

τyy + De

(
∂tτyy + u∂xτyy + v∂yτyy − 2Ca1/3 b

c
τxy∂xv − 2τyy∂yv

)
= −2

µU

c�
∂yv. (A 1c)

The scale for the τyx stress can be readily identified: from (2.4b) τyx ∼ µ∂yu or
τyx ∼ µU/h0 and hence b = µU/h0 so that the shear stress and the component d12

of the rate-of-strain tensor are of the same order; this is the usual scale for the
shear stress in interfacial flows. To obtain the scales for the normal stresses τxx and
τyy , we require that the time-dependent and nonlinear terms in the left-hand side of
(A1) balance. As a consequence, all nonlinear terms in the left-hand side of (A1)
are multiplied by the Deborah number De only, which is after all a measure of the
nonlinearities in the constitutive model for the stresses (Bird et al. 1987). This gives:

Ca−1/3 b

a
∼ 1, Ca1/3 a

b
∼ Ca−1/3 c

b
, Ca1/3 b

c
∼ 1,

or

a =
µU�

h2
0

, c =
µU

�
.

At the same time, the above order-of-magnitude assignments are necessary in order
to obtain a well-defined thin-film limit. In fact, these are the only scales allowing us
to do so.

Appendix B. Derivation of the IBL system
We first average the left-hand side of (4.1):∫ H

s

(∂tu + u∂xu + v∂yu) dy =

∫ H

s

∂tu dy +

∫ H

s

u∂xu dy +

∫ H

s

v∂yu dy. (B 1)

The first term in the right-hand side of (B 1) is evaluated by applying the Leibnitz
rule and the no-slip condition (2.7a). The last term in (B 1) is evaluated by performing
integrations by parts, using the continuity equation (2.6) and the no-slip condition
(2.7a). The right-hand side of (B 1) can then be written as:

∂t

∫ H

s

u dy + u|y=H (v|y=H − ∂tH ) + 2

∫ H

s

u∂xu dy,

which by using the kinematic boundary condition (2.7b), and applying the Leibnitz
rule yields:

∂t

∫ H

s

u dy + 2

∫ H

s

1
2
∂x(u

2)dy + (u|y=H )2∂xH = ∂t

∫ H

s

u dy + ∂x

∫ H

s

u2 dy.

The two terms on the right-hand side of this equation can be evaluated easily by using
the velocity profile in (4.3a) and the definition of the flow rate in (4.3b). Equation
(B 1) then becomes:∫ H

s

(∂tu + u∂xu + v∂yu) dy = ∂tq + 6
5
∂x

(
q2

h

)
. (B 2)
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We now turn to the averaging of the right-hand side of (4.1):∫ H

s

(∂x3H − ∂xτxx − ∂yτyx + 1) dy = h∂x3H −
∫ H

s

∂xτxx dy −
∫ H

s

∂yτyx dy + h. (B 3)

To evaluate the first integral in the right-hand side of (B 3), we use the Leibnitz rule
and the identity τxx |y=H = 0 with the velocity test function we have adopted. Hence,

∫ H

s

∂xτxx dy = ∂x

∫ H

s

τxx dy + (∂xs) τxx |y=s .

The evaluation of the second integral on the right-hand side of (B 3) is straightforward.
Equation (B 3) then becomes:∫ H

s

(∂x3H − ∂xτxx − ∂yτyx + 1) dy

= h∂x3H − ∂x

∫ H

s

τxx dy − (∂xs) τxx |y=s + τyx |y=s + h. (B 4)

Equating now the right-hand side of (B 2) multiplied by R to the right-hand side
of (B 4) yields (4.6).

Appendix C. Derivation of LWE from the IBL system
LWE can be derived from the IBL system in (4.7) by performing a gradient

expansion of the form

q = q0 + q1 + · · ·
with qn+1 � qn. qn+1 can be obtained from the iterative scheme

R

[
∂tqn + 6

5
∂x

(
q2

n

h

)]
= h∂x3H + h −3qn+ 1

h2
+ 3De

[
2∂x

(
q2

n

h3

)
+ ∂t

(
qn

h2

)]
(n= 0, 1, 2, . . .),

where q0 = h3/3. A single iteration with n= 0 then yields

q1 = 1
3
h3 + 1

3
h3∂x3H + 1

9
Rh6∂xh + 1

3
Deh4∂xh.

Substituting q0,1 into ∂th + ∂x[q0 + q1] = 0 gives the LWE model,

∂th + 2
3
∂x(h

3) + 1
3
∂x

(
1
3
Rh6∂xh + Deh4∂xh + h3∂x3H

)
= 0,

which is precisely the equation obtained directly from a long-wave approximation of
the equations of motion and wall/free-surface boundary conditions.

The second term in the above equation is the convective term due to mean flow, the
third and fourth terms are due to inertia and viscoelasticity, respectively, and the fifth
term is the streamwise curvature gradient that accounts for both the deviation height
and substrate curvatures. Hence, in the lubrication limit the viscoelastic contribution
is similar to the inertial one, but with a power of 4 for h instead of 6.
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